Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration
نویسندگان
چکیده
This is the first paper in a two-part series in which we analyze two model systems to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. The systems stem from a simplification of a general system of equations governing the motion of a binary fluid ~NSCH model @Lowengrub and Truskinovsky, Proc. R. Soc. London, Ser. A 454, 2617 ~1998!#! to flow in a Hele-Shaw cell. The system takes into account the chemical diffusivity between different components of a fluid mixture and the reactive stresses induced by inhomogeneity. In one of the systems we consider ~HSCH!, the binary fluid may be compressible due to diffusion. In the other system ~BHSCH!, a Boussinesq approximation is used and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH equations so as to yield the classical sharp interface model as a limiting case. We then analyze their equilibria, one dimensional evolution and linear stability. In the second paper @paper II, Phys. Fluids 14, 514 ~2002!#, we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH system, the equilibrium concentration profile is obtained using the classical Maxwell construction @Rowlinson and Widom, Molecular Theory of Capillarity ~Clarendon, Oxford, 1979!# and does not depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model are somewhat surprising as the gravitational field actually affects the internal structure of an isolated interface by driving additional stratification of light and heavy fluids over that predicted in the Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then show how this analysis may be used to suggest a set of modified parameters which, when used in the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite interface thickness. Evidence of this improved agreement may be found in paper II. © 2002 American Institute of Physics. @DOI: 10.1063/1.1425843#
منابع مشابه
Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime
This is the second paper in a two part series in which we analyze two diffuse interface models to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. Diffusion between the components is limited if the components are macroscopically immiscible. In one of the systems ~HSCH!, the binary fluid may be compress...
متن کاملModelling Pincho and Reconnection in a Hele-Shaw Cell I: The Models and their Calibration
This is the rst paper in a two-part series in which we analyze two model systems to study pinchoo and reconnection in binary uid ow in a Hele-Shaw cell. The systems stem from a simpliication of a general system of equations governing the motion of a binary uid (NSCH model 69]) to ow in a Hele-Shaw cell. The system takes into account the chemical diiusivity between diierent components of a uid m...
متن کاملExperimental study of the shape and motion of flattened drops in a Hele-Shaw Cell
> The motion and shape of a flattened drop and bubble through another continuous liquid phase (conveying phase) are investigated experimentally, using a narrow gap HeleShaw cell. Seven different liquid-liqu...
متن کاملNonlinear Saffman-Taylor instability.
We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)]] as the unstable branch of the corresponding subcritical bifurcation which ends up at a topological ...
متن کاملModelling Pincho and Reconnection in a Hele-Shaw Cell II: Analysis and Simulation in the Nonlinear Regime
This is the second paper in a two part series in which we analyze two diiuse interface models to study pinchoo and reconnection in binary uid ow in a Hele-Shaw cell. Diiu-sion between the components is limited if the components are macroscopically immiscible. In one of the systems (HSCH), the binary uid may be compressible due to diiusion. In the other system (BHSCH), a Boussinesq approximation...
متن کامل